Article thumbnail

Hadron Optics: Diffraction Patterns in Deeply Virtual Compton Scattering

By S Brodsky

Abstract

We show that the Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with respect to the skewness variable {zeta} provides a unique way to visualize the light-front wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate space variable ({sigma} = P{sup +}y{sup -}/2). The results are analogous to the diffractive scattering of a wave in optics in which the dependence of the amplitude on {sigma} measures the physical size of the scattering center of a one-dimensional system. If one combines this longitudinal transform with the Fourier transform of the DVCS amplitude with respect to the transverse momentum transfer {Delta}{sup {perpendicular}}, one can obtain a complete three-dimensional description of hadron optics at fixed light-front time {tau} = t + z/c. As a specific example, we utilize the quantum fluctuations of a fermion state at one loop in QED to obtain the behavior of the DVCS amplitude for electron-photon scattering. We then simulate the wavefunctions for a hadron by differentiating the above LFWFs with respect to M{sup 2} and study the corresponding DVCS amplitudes in {sigma} space

Topics: Transverse Momentum Hepph, Hepth, Statistics, Amplitudes, Diffraction, Scattering, Fluctuations, Asymmetry, Targets, Hadrons, Fermions, 72 Physics Of Elementary Particles And Fields, Compton Effect, Hepph, Hepth, Distribution, Optics
Publisher: Stanford Linear Accelerator Center
Year: 2006
OAI identifier:
Provided by: UNT Digital Library
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://digital.library.unt.edu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.