Article thumbnail

Pulsed Power Fusion Program update

By J.P. Quintenz, R.G. Adams and G.O. Allshouse

Abstract

The US Department of Energy has supported a substantial research program in Inertial Confinement Fusion (ICF) since the early 1970s. Over the course of the ensuing 25 years, pulsed power energy, efficiency, and relatively low cost of the technology when compared to the mainline ICF approach involving large glass lasers. These compelling advantages of pulsed power, however, have been tempered with the difficulty that has been encountered in concentrating the energy in space and time to create the high energy and power density required to achieve temperatures useful in indirect drive ICF. Since the Beams `96 meeting two years ago, the situation has changed dramatically and extremely high x-ray power ({approximately}290 TW) and energy ({approximately}1.8 MJ) have been produced in fast x-pinch implosions on the Z accelerator. These sources have been utilized to heat hohlraums to >150 eV and have opened the door to important ICF capsule experiments

Topics: Research Programs, 70 Plasma Physics And Fusion, Inertial Confinement, Longitudinal Pinch, Particle Beam Fusion Accelerator, X-Ray Sources, Inertial Fusion Drivers
Publisher: Sandia National Laboratories
Year: 1998
OAI identifier:
Provided by: UNT Digital Library
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://digital.library.unt.edu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.