We have obtained the first measurements of n{sub e} and T{sub e} in the DIII-D divertor region with a multi-pulse (20 Hz) Divertor Thomson Scattering (DTS) system. Eight measurement locations are distributed vertically up to 21 cm above the divertor plate. Two-dimensional distributions have been obtained by sweeping the divertor plasma across the DTS measurement location. Several operating modes have been studied, including ohmic, L-mode, Elming H-mode, and Radiative Divertor operation with puffing of D{sub 2} and impurities. Mapping of the data to either the (L{sub pol}, {phi}) or (R, Z) planes with the EFIT equilibrium is used to analyze the 2D profiles. We find that in ELMing H-mode: n{sub e}, T{sub e}, and P{sub e} are relatively constant along field lines from the X-point to the divertor plate, especially near the separatrix field line. With D{sub 2} puffing, the DTS profiles indicate that T{sub e} in a large part of divertor region below the X-point is dramatically reduced from {approximately}30-40 eV in ELMing H-mode to 1-2 eV. This results in a fairly uniform low-T{sub e} divertor, with an increased electron density in the range of 2 to 4 x 10{sup 20} m{sup -3}. Detailed comparisons of the spatial profiles of n{sub e}, T{sub e}, and electron pressure P{sub e}, are presented for several operating modes. In addition, these data are compared with initial calculations from the UEDGE fluid code
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.