Article thumbnail

Development of recrystallization texture and microstructure in cold rolled copper

By C.T. Necker, R.D. Doherty and A.D. Rollett

Abstract

Oxygen free electronic copper, 99.995% purity, of two initial grain sizes, 50 {mu}m and 100 {mu}m, has been cold rolled to six strains of 1.0, 1.5, 2.0, 2.65, 3.5 and 4.5 (von Mises equivalents). The rolled materials were partially and fully recrystallized to study the development of recrystallization textures as a function of grain size, strain and fraction recrystallized. The initial textures were relatively random and the deformation textures show the classic {beta} fiber development. As strain is increased both materials produce increasingly intense cube recrystallization textures, (100)<001>, as measured both by x-ray diffraction and the electron backscatter pattern (EBSP) techniques. The strong cube recrystallization textures are a product of a higher than random frequency of cube nucleation sites. An additional factor is that cube regions grow larger than non-cube regions. The explanation of the cube frequency advantage is based on the development of large stored energy differences between cube orientations and neighboring orientations due to recovery of cube sites. Of several possible explanations of the cube orientation size advantage, the most plausible one is solute entrapment. At the higher strains the boundaries of cube grains encounter the deformation texture S components, (123)<634>, changing the boundary character to one of 40{degrees}<111>. These boundaries are more resistant to solute accumulation than random high angle boundaries, allowing the boundaries to migrate with less of a solute drag effect than a random high angle boundary

Topics: Copper, Texture, X-Ray Diffraction, 36 Materials Science, Nucleation, Grain Size, Microstructure, Recrystallization, 66 Physics, Deformation, Strains
Publisher: Los Alamos National Laboratory
Year: 1996
OAI identifier:
Provided by: UNT Digital Library
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://digital.library.unt.edu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.