Techniques for intense-proton-beam profile measurements


In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H{sup +} cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H{sup {minus}}, pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA

Similar works

Full text


UNT Digital Library

Provided a free PDF
Last time updated on 11/21/2016View original full text link

This paper was published in UNT Digital Library.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.