Article thumbnail

Crystalline beams

By J.P. Schiffer

Abstract

A beam of confined charged particles, that are cooled to the extreme of the space-charge dominated regime, where the relative motion of particles within the beam is small compared to their Coulomb potential energies, will crystallize in a unique form of condensed matter. Such a system of particles can be simulated using the method of Molecular Dynamics, which explicitly includes the interaction between all pairs of particles and uses repeating cells to simulate the effects of a long beam. Within the molecular dynamics simulations typically a few thousand particles are followed in time, allowed to equilibrate, and then the velocities are gradually scaled down while still allowing the system to maintain equilibrium. To reach a cold equilibrium value requires 10-100 thousand iterations, corresponding to real times on the order of a few thousand betatron periods

Topics: Betatrons, Oscillation Modes, Storage Rings, Feasibility Studies, Particle Beams, 66 Physics, Crystallization, Iterative Methods, Beam Dynamics
Publisher: Argonne National Laboratory
Year: 1995
DOI identifier: 10.1063/1.48243
OAI identifier:
Provided by: UNT Digital Library
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://digital.library.unt.edu... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.