Article thumbnail

Rheological properties essential for the atomization of coal water slurries (CWS). Quarterly progress report, December 15, 1994--March 15, 1995

By F. Ohene


The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS. During the past quarter, further rheological testing were performed on CWS samples that had been prepared and stored for a period of three months. The testing included low and high shear measurements as well as dynamic oscillatory measurements. The CWS tested were PSOC-1527 from Middle Kittaning, PSOC-1472 from Lower Banner and PSOC-1475 (Elkhorn No. 3). These tests were performed in order to delineate any differences in rheological properties due to aging, and how this differences will influence subsequent atomization of the slurries. The test results obtained on PSOC-1527 and 1472, showed slight variations in their rheological behavior when compared to previously obtained data on the same samples. The data obtained on PSOC-1475, however showed no significant variation

Topics: Fuel Slurries, 01 Coal, Lignite, And Peat, Correlations, Progress Report, Coal, Water, Experimental Data, Mixtures, Atomization, Particle Size, Rheology, Shear
Publisher: Grambling State Univ., LA (United States). Dept. of Chemistry
Year: 1995
DOI identifier: 10.2172/102281
OAI identifier:
Provided by: UNT Digital Library
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.