Forecasting new product trial in a controlled test market environment


A number of researchers have developed models that use test market data to generate forecasts of a new product's performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model's forecasting performance and explore whether their presence enables us to reduce the length of the model calibration period (i.e. shorten the duration of the test market). We develop from first principles a set of models that enable us to systematically explore the impact of various model 'components' on forecasting performance. Furthermore, we also explore the impact of the length of the test market on forecasting performance. We find that it is critically important to capture consumer heterogeneity, and that the inclusion of covariate effects can improve forecast accuracy, especially for models calibrated on fewer than 20 weeks of data. Copyright © 2003 John Wiley & Sons, Ltd.

Similar works

Full text


Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.