Nonconcave penalized inverse regression in single-index models with high dimensional predictors


In this paper we aim to estimate the direction in general single-index models and to select important variables simultaneously when a diverging number of predictors are involved in regressions. Towards this end, we propose the nonconcave penalized inverse regression method. Specifically, the resulting estimation with the SCAD penalty enjoys an oracle property in semi-parametric models even when the dimension, pn, of predictors goes to infinity. Under regularity conditions we also achieve the asymptotic normality when the dimension of predictor vector goes to infinity at the rate of pn=o(n1/3) where n is sample size, which enables us to construct confidence interval/region for the estimated index. The asymptotic results are augmented by simulations, and illustrated by analysis of an air pollution dataset.62H15 62G20 Dimension reduction Diverging parameters Inverse regression SCAD Sparsity

Similar works

Full text


Research Papers in Economics

Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.