Inference on a regression model with noised variables and serially correlated errors

Abstract

Motivated by a practical problem, [Z.W. Cai, P.A. Naik, C.L. Tsai, De-noised least squares estimators: An application to estimating advertising effectiveness, Statist. Sinica 10 (2000) 1231-1243] proposed a new regression model with noised variables due to measurement errors. In this model, the means of some covariates are nonparametric functions of an auxiliary variable. They also proposed a de-noised estimator for the parameters of interest, and showed that it is root-n consistent and asymptotically normal when undersmoothing is applied. The undersmoothing, however, causes difficulty in selecting the bandwidth. In this paper, we propose an alternative corrected de-noised estimator, which is asymptotically normal without the need for undersmoothing. The asymptotic normality holds over a fairly wide range of bandwidth. A consistent estimator of the asymptotic covariance matrix under a general stationary error process is also proposed. In addition, we discuss the fitting of the error structure, which is important for modeling diagnostics and statistical inference, and extend the existing error structure fitting method to this new regression model. A simulation study is made to evaluate the proposed estimators, and an application to a set of advertising data is also illustrated.62G05 62G20 62M10 Regression with noised variables De-noising Serially correlated errors ARMA model Asymptotic normality Consistency

Similar works

Full text

thumbnail-image

Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.