Empirical likelihood for heteroscedastic partially linear models

Abstract

We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear models, the proposed empirical likelihood is constructed using components of a semiparametric efficient score. We show that it retains the double robustness feature of the semiparametric efficient estimator for the parameters and shares the desirable properties of the empirical likelihood for linear models. Compared with the normal approximation method and the existing empirical likelihood methods, the empirical likelihood method based on the semiparametric efficient score is more attractive not only theoretically but empirically. Simulation studies demonstrate that the proposed empirical likelihood provides smaller confidence regions than that based on semiparametric inefficient estimating equations subject to the same coverage probabilities. Hence, the proposed empirical likelihood is preferred to the normal approximation method as well as the empirical likelihood method based on semiparametric inefficient estimating equations, and it should be useful in practice.62F35 62G20 Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency

Similar works

Full text

thumbnail-image

Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.