Recent theoretical and empirical studies have focused on the topology of large networks of communication/interactions in biological, social and technological systems. Most of them have been studied in the scope of the small-world and scale-free networks’ theory. Here we analyze the characteristics of ant networks of galleries produced in a 2-D experimental setup. These networks are neither small-worlds nor scale-free networks and belong to a particular class of network, i.e. embedded planar graphs emerging from a distributed growth mechanism. We compare the networks of galleries with both minimal spanning trees and greedy triangulations. We show that the networks of galleries have a path system efficiency and robustness to disconnections closer to the one observed in triangulated networks though their cost is closer to the one of a tree. These networks may have been prevented to evolve toward the classes of small-world and scale-free networks because of the strong spatial constraints under which they grow, but they may share with many real networks a similar trend to result from a balance of constraints leading them to achieve both path system efficiency and robustness at low cost. Copyright Springer-Verlag Berlin/Heidelberg 2004
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.