Finite size effects on transport coefficients for models of atomic wires coupled to phonons

Abstract

We consider models of quasi-1-d, planar atomic wires consisting of several, laterally coupled rows of atoms, with mutually non-interacting electrons. This electronic wire system is coupled to phonons, corresponding, e.g., to some substrate. We aim at computing diffusion coefficients in dependence on the wire widths and the lateral coupling. To this end we firstly construct a numerically manageable linear collision term for the dynamics of the electronic occupation numbers by following a certain projection operator approach. By means of this collision term we set up a linear Boltzmann equation. A formula for extracting diffusion coefficients from such Boltzmann equations is given. We find in the regime of a few atomic rows and intermediate lateral coupling a significant and non-trivial dependence of the diffusion coefficient on both, the width and the lateral coupling. These results, in principle, suggest the possible applicability of such atomic wires as electronic devices, such as, e.g., switches. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Similar works

Full text

thumbnail-image

Research Papers in Economics

Provided original full text link
Last time updated on 7/6/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.