Low-field magnetic response of multi-junction superconducting quantum interference devices
- Publication date
- Publisher
Abstract
The magnetic states of multi-junction superconducting quantum interference device containing 2N identical conventional Josephson junctions are studied by means of a perturbation analysis of the non-linear first-order ordinary differential equations governing the dynamics of the Josephson junctions in these devices. In the zero-voltage state, persistent currents are calculated in terms of the externally applied magnetic flux Φ ex . The resulting d.c. susceptibility curves show that paramagnetic and diamagnetic states are present, depending on the value of Φ ex . The stability of these states is qualitatively studied by means of the effective potential notion for the system. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 200874.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects, 85.25.Dq Superconducting quantum interference devices (SQUIDs),