Skip to main content
Article thumbnail
Location of Repository

A Multiple Attribute Utility Theory Approach to Ranking and Selection

By John Butler, Douglas J. Morrice and Peter W. Mullarkey


Managers of large industrial projects often measure performance by multiple attributes. For example, our paper is motivated by the simulation of a large industrial project called a land seismic survey, in which project performance is based on duration, cost, and resource utilization. To address these types of problems, we develop a ranking and selection procedure for making comparisons of systems (e.g., project configurations) that have multiple performance measures. The procedure combines multiple attribute utility theory with statistical ranking and selection to select the best configuration from a set of possible configurations using the indifference-zone approach. We apply our procedure to results generated by the simulator for a land seismic survey that has six performance measures, and describe a particular type of sensitivity analysis that can be used as a robustness check.Simulation, Ranking and Selection, Multiple Attribute Utility Theory

DOI identifier: 10.1287/mnsc.47.6.800.9812
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.