Skip to main content
Article thumbnail
Location of Repository

Markov Chain Monte Carlo Methods for Parameter Estimation in Multidimensional Continuous Time Markov Switching Models

By Markus Hahn, Sylvia Frühwirth-Schnatter and Jörn Sass


We consider a multidimensional, continuous-time model where the observation process is a diffusion with drift and volatility coefficients being modeled as continuous-time, finite-state Markov chains with a common state process. For the econometric estimation of the states for drift and volatility and the rate matrix of the underlying Markov chain, we develop both an exact continuous time and an approximate discrete-time Markov chain Monte Carlo (MCMC) sampler and compare these approaches with maximum likelihood (ML) estimation. For simulated data, MCMC outperforms ML estimation for difficult cases like high rates. Finally, for daily stock index quotes from Argentina, Brazil, Mexico, and the USA we identify four states differing not only in the volatility of the various assets but also in their correlation. Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:, Oxford University Press.

DOI identifier: 10.1093/jjfinec
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.