Skip to main content
Article thumbnail
Location of Repository

Smooth estimation of survival and density functions for a stationary associated process using Poisson weights

By Yogendra P. Chaubey, Isha Dewan and Jun Li


Let {Xn,n>=1} be a sequence of stationary non-negative associated random variables with common marginal density f(x). Here we use the empirical survival function as studied in Bagai and Prakasa Rao (1991) and apply the smoothing technique proposed by Gawronski (1980) (see also Chaubey and Sen, 1996) in proposing a smooth estimator of the density function f and that of the corresponding survival function. Some asymptotic properties of the resulting estimators, similar to those obtained in Chaubey and Sen (1996) for the i.i.d. case, are derived. A simulation study has been carried out to compare the new estimator to the kernel estimator of a density function given in Bagai and Prakasa Rao (1996) and the estimator in Buch-Larsen et al. (2005).Associated sequence Hille's theorem Strong consistency Survival function Transformation density estimator

OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.