Location of Repository

Bootstrap-based bandwidth choice for log-periodogram regression

By Josu Arteche and Jesus Orbe

Abstract

The choice of the bandwidth in the local log-periodogram regression is of crucial importance for estimation of the memory parameter of a long memory time series. Different choices may give rise to completely different estimates, which may lead to contradictory conclusions, for example about the stationarity of the series. We propose here a data-driven bandwidth selection strategy that is based on minimizing a bootstrap approximation of the mean-squared error (MSE). Its behaviour is compared with other existing techniques for optimal bandwidth selection in a MSE sense, revealing its better performance in a wider class of models. The empirical applicability of the proposed strategy is shown with two examples: the widely analysed in a long memory context Nile river annual minimum levels and the input gas rate series of Box and Jenkins. Copyright 2009 Blackwell Publishing Ltd

DOI identifier: 10.1111/j.1467-9892.2009.00629.x
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.blackwell-synergy.c... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.