Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity

Abstract

Due to the dependency of the energy demand on temperature, weather derivatives enable the effective hedging of temperature related fluctuations. However, temperature varies in space and time and therefore the contingent weather derivatives also vary. The spatial derivative price distribution involves a risk premium. We employ a pricing model for temperature derivatives based on dynamics modeled via a vectorial Ornstein-Uhlenbeck process with seasonal variation. We use an analytical expression for the risk premia depending on variation curves of temperature in the measurement period. The dependence is exploited by a functional principal component analysis of the curves. We compute risk premia on cumulative average temperature futures for locations traded on CME and fit to it a geographically weighted regression on functional principal component scores. It allows us to predict risk premia for nontraded locations and to adopt, on this basis, a hedging strategy, which we illustrate in the example of Leipzig.

Similar works

Full text

thumbnail-image

Research Papers in Economics

redirect
Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.