A segmentation-based algorithm for large-scale partially ordered monotonic regression

Abstract

Monotonic regression (MR) is an efficient tool for estimating functions that are monotonic with respect to input variables. A fast and highly accurate approximate algorithm called the GPAV was recently developed for efficient solving large-scale multivariate MR problems. When such problems are too large, the GPAV becomes too demanding in terms of computational time and memory. An approach, that extends the application area of the GPAV to encompass much larger MR problems, is presented. It is based on segmentation of a large-scale MR problem into a set of moderate-scale MR problems, each solved by the GPAV. The major contribution is the development of a computationally efficient strategy that produces a monotonic response using the local solutions. A theoretically motivated trend-following technique is introduced to ensure higher accuracy of the solution. The presented results of extensive simulations on very large data sets demonstrate the high efficiency of the new algorithm.Quadratic programming Large-scale optimization Least distance problem Monotonic regression Partially ordered data set Pool-adjacent-violators algorithm

Similar works

Full text

thumbnail-image

Research Papers in Economics

redirect
Last time updated on 06/07/2012

This paper was published in Research Papers in Economics.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.