A discrete-time performance model for congestion control mechanism using queue thresholds with QOS constraints

Abstract

This paper presents a new analytical framework for the congestion control of Internet traffic using a queue threshold scheme. This framework includes two discrete-time analytical models for the performance evaluation of a threshold based congestion control mechanism and compares performance measurements through typical numerical results. To satisfy the low delay along with high throughput, model-I incorporates one threshold to make the arrival process step reduce from arrival rate ¿1 directly to ¿2 once the number of packets in the system has reached the threshold value L1. The source operates normally, otherwise. Model-II incorporates two thresholds to make the arrival rate linearly reduce from ¿1 to ¿2 with system contents when the number of packets in the system is between two thresholds L1 and L2. The source operates normally with arrival rate ¿1 before threshold L1, and with arrival rate ¿2 after the threshold L2. In both performance models, the mean packet delay W, probability of packet loss PL and throughput S have been found as functions of the thresholds and maximum drop probability. The performance comparison results for the two models have also been made through typical numerical results. The results clearly demonstrate how different load settings can provide different tradeoffs between throughput, loss probability and delay to suit different service requirements

Similar works

This paper was published in Bradford Scholars.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.