Descriptive Complexity of #AC^0 Functions


We introduce a new framework for a descriptive complexity approach to arithmetic computations. We define a hierarchy of classes based on the idea of counting assignments to free function variables in first-order formulae. We completely determine the inclusion structure and show that #P and #AC^0 appear as classes of this hierarchy. In this way, we unconditionally place #AC^0 properly in a strict hierarchy of arithmetic classes within #P. We compare our classes with a hierarchy within #P defined in a model-theoretic way by Saluja et al. We argue that our approach is better suited to study arithmetic circuit classes such as #AC^0 which can be descriptively characterized as a class in our framework

Similar works

Full text


Dagstuhl Research Online Publication Server

Provided a free PDF

This paper was published in Dagstuhl Research Online Publication Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.