Location of Repository

A note on maximal length elements in conjugacy classes of finite coxeter groups

By Sarah Hart and P.J. Rowley

Abstract

The maximal lengths of elements in each of the conjugacy classes of Coxeter groups of types $B_n$, $D_n$ and $E_6$ are determined. Additionally, representative elements are given that attain these maximal lengths

Topics: ems
Publisher: Birkbeck College, University of London
Year: 2010
OAI identifier: oai:eprints.bbk.ac.uk.oai2:1262

Suggested articles

Preview

Citations

  1. (1997). An Introduction to Algebraic Programming with Magma [draft],
  2. (2000). Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, doi
  3. (1972). Conjugacy Classes in the Weyl Group, doi
  4. Exercises d’analyse et de physique mathematique, doi
  5. (1993). Finite groups of Lie type. Conjugacy classes and complex characters doi
  6. (2004). Lengths of involutions in Coxeter groups, doi
  7. (2002). Minimal and maximal length involutions in finite Coxeter groups, doi
  8. (2000). Minimal length elements in twisted conjugacy classes of finite Coxeter groups, doi
  9. (1998). Mots de longueur maximale dans une classe de conjugaison d’un groupe symtrique, vu comme groupe de Coxeter (French) [Words of maximal length in a conjugacy class of a symmetric group, viewed as a Coxeter group], doi
  10. (1990). Reflection Groups and Coxeter Groups, doi
  11. (1873). The collected papers of Alfred Young, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.