Location of Repository

A study of commercial vehicle brake judder transmission using multi-body dynamic analysis

By Khalid Hussain, S.H. Yang and Andrew J. Day

Abstract

YesBraking-induced forced vibration, known as brake judder in road vehicles, causes\ud dissatisfaction to drivers and passengers and also damage and possible early failure in components\ud and systems. In this paper, the transmission of judder vibration from the point of generation\ud (the brake friction pair) through the vehicle structure to the driver is investigated for the\ud particular case of a heavy commercial vehicle. The investigation uses a computer simulation\ud multi-body dynamic model based on the automatic dynamic analysis of mechanical systems\ud software to identify any characteristics of the vehicle suspension design that might influence\ud the vibration transmission from the wheel to the driver.\ud The model uses a simplified rigid chassis and cab to lump the chassis parameters, so that the\ud investigation can focus on the front axle/suspension design, which is a beam axle leaf spring\ud arrangement, and the rear axle/suspension assembly, which is a tandem axle bogie design.\ud Results from the modelling indicate that brake judder vibration is transmitted to the chassis\ud of the vehicle through a leaf spring `wind-up¿ mode and a `walking¿ mode associated with the\ud rear tandem axle. Of particular interest is the longitudinal vibration transmitted through the\ud chassis, since this creates a direct vibration transmission path to the cab and driver. The simulation\ud results were compared with the previously published experimental work on the same\ud design of commercial vehicle, and agreement between the predicted and the measured\ud vibration characteristics and frequencies was found.\ud It is concluded that the rear suspension design parameters could affect the transmission of\ud brake judder vibration to the cab and driver and that a tandem rear axle offers some design\ud opportunity to control the transmission of brake judder vibrations from the wheel to the cab\ud and driver. Given that brake judder has so far defied all attempts to eliminate completely\ud from vehicle brake systems, this is potentially an important opportunity

Topics: Commercial Vehicle, Brake, Judder, Transmission, Multi-Body, Dynamic, Prediction, Simulation
Year: 2007
DOI identifier: 10.1243/1464419JMBD23
OAI identifier: oai:bradscholars.brad.ac.uk:10454/880
Provided by: Bradford Scholars

Suggested articles

Preview

Citations

  1. (2003). ADAMS/View User Guide Manual,
  2. (2007). and A Day

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.