Location of Repository

The case of equality in the Livingstone-Wagner Theorem

By D. Bundy and Sarah Hart

Abstract

Let G be a permutation group acting on a set Ω of size n∈ℕ and let 1≤k<(n−1)/2. Livingstone and Wagner proved that the number of orbits of G on k-subsets of Ω is less than or equal to the number of orbits on (k+1)-subsets. We investigate the cases when equality occurs

Topics: ems
Publisher: Springer
Year: 2009
OAI identifier: oai:eprints.bbk.ac.uk.oai2:1954

Suggested articles

Preview

Citations

  1. (1979). An interchange property in ¯nite permutation groups. doi
  2. (1979). An interchange property in finite permutation groups. doi
  3. Bearbeitet und herausgegeben von Helmut Grunsky. Die Grundlehren der mathematischen Wissenschaften, doi
  4. (1989). Groups acting on unordered sets. doi
  5. (1967). Note on a theorem of Livingstone doi
  6. (1981). Orbits of permutation groups on unordered sets. doi
  7. (1965). Transitivity of ¯nite permutation groups on unordered sets. doi
  8. (1965). Transitivity of finite permutation groups on unordered sets. doi
  9. (1976). Transitivity of permutation groups on unordered sets. doi
  10. Vorlesungen U¨ber Invariantentheorie. Bearbeitet und herausgegeben von Helmut Grunsky. Die Grundlehren der mathematischen Wissenschaften,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.