Skip to main content
Article thumbnail
Location of Repository

Photorespiration: metabolic pathways and their role in stress protection\ud

By A. Wingler, P.J. Lea, W.P. Quick and R.C. Leegood


Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/\ud oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the\ud photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic\ud process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus\ud making photorespiration a wasteful process. However, precisely because of this ine┬Ąciency, photorespiration\ud could serve as an energy sink preventing the overreduction of the photosynthetic electron transport\ud chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic\ud CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g.\ud glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we\ud describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways.\ud In addition, we discuss the possible role of photorespiration under stress conditions, such as\ud drought, high salt concentrations and high light intensities encountered by alpine plants

Year: 2000
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.