Skip to main content
Article thumbnail
Location of Repository

Recognition and reconstruction of coherent energy with application to deep seismic reflection data

By M. Van der Baan and A. Paul


Reflections in deep seismic reflection data tend to be\ud visible on only a limited number of traces in a common\ud midpoint gather. To prevent stack degeneration,\ud any noncoherent reflection energy has to be removed.\ud In this paper, a standard classification technique in\ud remote sensing is presented to enhance data quality. It\ud consists of a recognition technique to detect and extract\ud coherent energy in both common shot gathers and fi-\ud nal stacks. This technique uses the statistics of a picked\ud seismic phase to obtain the likelihood distribution of its\ud presence. Multiplication of this likelihood distribution\ud with the original data results in a “cleaned up” section.\ud Application of the technique to data from a deep seismic\ud reflection experiment enhanced the visibility of all\ud reflectors considerably.\ud Because the recognition technique cannot produce an\ud estimate of “missing” data, it is extended with a reconstruction\ud method. Two methods are proposed: application\ud of semblance weighted local slant stacks after recognition,\ud and direct recognition in the linear tau-p domain.\ud In both cases, the power of the stacking process to increase the signal-to-noise ratio is combined with the direct selection of only specific seismic phases. The joint\ud application of recognition and reconstruction resulted in\ud data images which showed reflectors more clearly than\ud application of a single technique

Year: 2000
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.