Skip to main content
Article thumbnail
Location of Repository

A numerical study of radial basis function based methods for option pricing under one dimension jump-diffusion model

By Ron T.L. Chan and Simon Hubbert


The aim of this paper is to show how option prices in the Jump-diffusion model can be computed using meshless methods based on Radial Basis Function (RBF) interpolation. The RBF technique is demonstrated by solving the partial integro-differential equation (PIDE) in one-dimension for the Ameri-\ud can put and the European vanilla call/put options on dividend-paying stocks in the Merton and Kou Jump-diffusion models. The radial basis function we select is the Cubic Spline. We also propose a simple numerical algorithm for\ud finding a finite computational range of a global integral term in the PIDE so that the accuracy of approximation of the integral can be improved. Moreover, the solution functions of the PIDE are approximated explicitly by RBFs\ud which have exact forms so we can easily compute the global intergal by any kind of numerical quadrature. Finally, we will also show numerically that our scheme is second order accurate in spatial variables in both American and European cases

Topics: ems
Publisher: Elsevier
OAI identifier:

Suggested articles


  1. 30Cont, R., Voltchkova, E., 2005. A dierence scheme for option
  2. 31Jackson, K. R., Sebastian, J., Vladimir, S., 2008. Fourier
  3. 32Matache, A.-M., Schwab, C., Wihler, T. P., 2005. Fast numerical
  4. (2005). A finite difference scheme for option pricing in jump diffusion and exponential Le´vy models. doi
  5. (2002). A jump diffusion model for option pricing. doi
  6. (2004). A penalty method for American options with Jump Diffusion processes. doi
  7. (1999). A radial basis function method for solving options pricing model.
  8. (2001). A simple option formula for general Jump-diffusion and other exponential Le´vy processes. ExpLevy.pdf.
  9. (2007). Accurate evaluation of European and American options under the CGMY process. doi
  10. Bos, L., Salkauskas, K., 1987. On doi
  11. Boyarchenko, S.
  12. Briani, M., Natalini, R., doi
  13. Carr, P., Madan, D. doi
  14. Carr, P., Madan, D. B., Chang, E.
  15. Carr, P., Mayo, A., 2007. On the doi
  16. Cont,
  17. (1988). Convergence of LMM when the solution is not smooth. doi
  18. D'Halluin, Y., Forsyth, P. A., Labahn, G., 2004. A doi
  19. D'Halluin, Y., Forsyth, P., Vetzalz, K., 2005. Robust
  20. E., Khaliq, A. Q. M., Voss, D. A.,
  21. (2006). Exotic options under Le´vy models: An overview. doi
  22. Fasshauer, G. E., Zhang, J. G., doi
  23. (2005). Fast numerical solution of parabolic integrodifferential equations with applications in finance. doi
  24. (2004). Financial Modelling With Jump Processes. doi
  25. (1984). Finite element solution of diffusion problems with irregular data. doi
  26. Fornberg, B., Wright, G., 2004. Stable computation of doi
  27. Forsyth, P., Vetzal, K., 2002. Quadratic doi
  28. (2008). Fourier space time-stepping for option pricing with Le´vy models. doi
  29. (2006). Highly accurate evaluation of european and american options under the variance gamma process. doi
  30. Hirsa, A., Madan,
  31. Hon, Y. C., Mao, X. Z., 1999. A
  32. (2007). Implicit-explict numerical schemes for Jump-diffusion processes. doi
  33. (1992). Improved accuracy of multiquadric interpolation using variable shape parameters. doi
  34. (2004). In: Proceedings of A Parallel Time Stepping Approach Using Meshfree Approximations for Pricing Options with Non-smooth Payoffs.
  35. Johnson, C., 1987. Numerical Solutions doi
  36. (2000). Jump-diffusion processes: Volalitility smile fitting and numerical methods for option pricing. doi
  37. (2000). Jump-diusion processes: Volalitility smile and numerical methods for option pricing. doi
  38. Kansa, E. J., 1990a. Multiquadrics - a scattered data approximation scheme with applications to computational doi
  39. Kansa, E. J., 1990b. Multiquadricsa scattered data approximation scheme with applications to computation uid dynamics: Ii.
  40. Kansa, E. J., Carlson, R. E., 1992. doi
  41. Khaliq, A. Q. M., Voss, D. A., July 2004a. In: Proceedings of A Parallel Time Stepping Approach Using
  42. Kou, S. doi
  43. Kou, S. G., Wang, H., 2001.
  44. Larsson, E., Ahlander, K., Hall, A., 2008. Multi-dimensional option pricing doi
  45. (2003). Le´vy Processes in Finance : Pricing Financial Derivatives.
  46. Lewis, A. L., 2001. A simple option formula for general Jump-diusion doi
  47. Madan, D. B., Milne, doi
  48. Matache, A.-M., Nitsche, P.-A., Schwab, C., 2003. Wavelet galerkin pricing of American doi
  49. Merton, R. C., doi
  50. (2008). Multi-dimensional option pricing using radial basis functions and the generalized fourier transform. doi
  51. (1990). Multiquadrics - a scattered data approximation scheme with applications to computational fluid dynamics - i.surface approximations and partial derivatives estimates. doi
  52. (1990). Multiquadricsa scattered data approximation scheme with applications to computation fluid dynamics: Ii. solution to parabolic, hyperbolic and elliptic partial differential equations. doi
  53. (2002). Non-Gaussian Merton-BlackScholes theory.
  54. (1994). Numerical solution of ordinary differential equations. doi
  55. (1987). Numerical Solutions of Partial Differential Equations by the Finite Element Method. doi
  56. (2005). Numerical valuation of american options under the CGMY process. In: Schoutens,
  57. (2005). Numerical valuation of options with jumps in the underlying. doi
  58. of doi
  59. (2004). On american options under the variance gamma process. doi
  60. (2007). On choosing optimal shape parameters for rbf approximation. doi
  61. (1987). On the matrix [|xi−xj|3] and the cubic spline continuity equations. doi
  62. (2007). On the numerical evaluation of option prices in jump diffusion processes. doi
  63. (1997). Optimal stopping, free boundary, and american option in a jump-diffusion model. doi
  64. (2001). Option pricing under a double exponential jump diffusion model. doi
  65. (1976). Option pricing when underlying stock returns are discontinuous. doi
  66. (1991). Option pricing with v. g. martingale components. doi
  67. (1999). Option valuation using the Fast Fourier Transform.
  68. P., Geman, H., Madan, D. B., Yor, M., 2002. doi
  69. Pham, H., 1997. Optimal stopping, doi
  70. (2004). Pricing American options under Variance Gamma.
  71. (2002). Quadratic convergence of a penalty method for valuing American options. doi
  72. R., Wan, J. W. L., Forsyth, P. A., 2007. Robust numerical valuation
  73. Rannacher, R., 1984. doi
  74. (2005). Robust numerical methods for contingent claims under Jump Duffusion process. doi
  75. (2007). Robust numerical valuation of European and American options under the CGMY process.
  76. (2005). Scattered Data Approximation,. doi
  77. Schoutens, W., doi
  78. Schoutens, W., 2003. doi
  79. Series,
  80. Shampine,
  81. Shampine, L. F., Zhang, W., 1988.
  82. (2004). Stable computation of multiquadric interpolants for all values of the shape parameter. doi
  83. (2002). The fine structure of asset returns: An empirical investigation. doi
  84. (1998). The variance gamma process and option pricing. doi
  85. (2004). Using meshfree approximation for multi-asset american option problems. doi
  86. (2008). Vectorized adaptive quadrature in matlab. doi
  87. (2003). Wavelet galerkin pricing of American options on Le´vy driven assets, working paper. doi
  88. Wendland, H., 2005. Scattered Data Approximation,. Vol. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.