Root production is determined by radiation flux in a temperate grassland community

Abstract

Accurate knowledge of the response of root turnover to a changing climate is needed to predict growth and produce carbon cycle models. A soil warming system and shading were used to vary soil temperature and received radiation independently in a temperate grassland dominated by Holcus lanatus L. Minirhizotrons allowed root growth and turnover to be examined non-destructively. In two short-term (8 week) experiments, root responses to temperature were seasonally distinct. Root number increased when heating was applied during spring, but root death increased during autumnal heating. An experiment lasting 12 months demonstrated that any positive response to temperature was short-lived and that over a full growing season, soil warming led to a reduction in root number and mass due to increased root death during autumn and winter. Root respiration was also insensitive to soil temperature over much of the year. In contrast, root growth was strongly affected by incident radiation. Root biomass, length, birth rate, number and turnover were all reduced by shading. Photosynthesis in H. lanatus exhibited some acclimation to shading, but assimilation rates at growth irradiance were still lower in shaded plants. The negative effects of shading and soil warming on roots were additive. Comparison of root data with environmental measurements demonstrated a number of positive relationships with photosynthetically active radiation, but not with soil temperature. This was true both across the entire data set and within a shade treatment. These results demonstrate that root growth is unlikely to be directly affected by increased soil temperatures as a result of global warming, at least in temperate areas, and that predictions of net primary productivity should not be based on a positive root growth response to temperature

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.