Skip to main content
Article thumbnail
Location of Repository

Magnetic characterization of perpendicular recording media

By J. Wu, K. O'Grady, S. Khizroev, J.K. Howard, R.W. Gustafson, D. Litvinov, L. Holloway and H. Laidler


In this paper, we describe techniques for the magnetic characterization of perpendicular recording media. Such measurements made using traditional techniques, such as the vibrating sample magnetometry (VSM) and alternating gradient force magnetometer (AGFM), have to be corrected for the sample shape demagnetizing factor, which is often found not to be equal to -4p. For measurements other than the simple hysteresis loop, such as remanence curves, this correction must be carried out in real time and we describe the method by which this can be achieved and the process for achieving the correct demagnetization of perpendicular films prior to measurements of the isothermal remanent magnetization curve. A further complication is that real perpendicular media have a soft underlayer beneath the recording layer, which swamps and confuses signals from instruments such as VSM or AGFM. Hence, we describe the construction and use of a magnetooptical Kerr effect magnetometer, which does not penetrate significantly into the soft layer and enables the perpendicular layer to be measured independently. We describe the properties of a traditional alloy perpendicular medium and a Co-Pd multilayer system, which in the latter case exhibits multiple switching behavior. We also address the issue of the effect of the soft underlayer on the coupling in similar longitudinal films and find that the presence of the underlayer induces significant additional coupling effects that may well give rise to an increase in noise in recorded signal

Year: 2002
DOI identifier: 10.1109/TMAG.2002.1017756
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.