Location of Repository

Polynomial spline-approximation of Clarke's model

By Y V Zakharov, T C Tozer and J F Adlard

Abstract

We investigate polynomial spline approximation of stationary random processes on a uniform grid applied to Clarke's model of time variations of path amplitudes in multipath fading channels with Doppler scattering. The integral mean square error (MSE) for optimal and interpolation splines is presented as a series of spectral moments. The optimal splines outperform the interpolation splines; however, as the sampling factor increases, the optimal and interpolation splines of even order tend to provide the same accuracy. To build such splines, the process to be approximated needs to be known for all time, which is impractical. Local splines, on the other hand, may be used where the process is known only over a finite interval. We first consider local splines with quasioptimal spline coefficients. Then, we derive optimal spline coefficients and investigate the error for different sets of samples used for calculating the spline coefficients. In practice, approximation with a low processing delay is of interest; we investigate local spline extrapolation with a zero-processing delay. The results of our investigation show that local spline approximation is attractive for implementation from viewpoints of both low processing delay and small approximation error; the error can be very close to the minimum error provided by optimal splines. Thus, local splines can be effectively used for channel estimation in multipath fast fading channels

Year: 2004
DOI identifier: 10.1109/TSP.2004.826159
OAI identifier: oai:eprints.whiterose.ac.uk:675

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.