Improved AURA k-Nearest Neighbour approach

Abstract

The k-Nearest Neighbour (kNN) approach is a widely-used technique for pattern classification. Ranked distance measurements to a known sample set determine the classification of unknown samples. Though effective, kNN, like most classification methods does not scale well with increased sample size. This is due to their being a relationship between the unknown query and every other sample in the data space. In order to make this operation scalable, we apply AURA to the kNN problem. AURA is a highly-scalable associative-memory based binary neural-network intended for high-speed approximate search and match operations on large unstructured datasets. Previous work has seen AURA methods applied to this problem as a scalable, but approximate kNN classifier. This paper continues this work by using AURA in conjunction with kernel-based input vectors, in order to create a fast scalable kNN classifier, whilst improving recall accuracy to levels similar to standard kNN implementations

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.