Location of Repository

Avalanche multiplication in AlxGa1-xAs (x=0to0.60) \ud

By S.A. Plimmer, J.P.R. David, R. Grey and G.J. Rees

Abstract

Electron and hole multiplication characteristics, Me and Mh, have been measured in AlxGa1-xAs (x=0-0.60) homojunction p+-i-n+ diodes with i-region thicknesses, w, from 1 μm to 0.025 μm and analyzed using a Monte Carlo model (MC). The effect of the composition on both the macroscopic multiplication characteristics and microscopic behavior is therefore shown for the first time. Increasing the alloy fraction causes the multiplication curves to be shifted to higher voltages such that the multiplication curves at any given thickness are practically parallel for different x. The Me/Mh ratio also decreases as x increases, varying from ~2 to ~1 as x increases from 0 to 0.60 in a w=1 μm p+-i-n+. The Monte-Carlo model is also used to extract ionization coefficients and dead-space distances from the measured results which cover electric field ranges from ~250 kV/cm-1200 kV/cm in each composition. These parameters can be used to calculate the nonlocal multiplication process by solving recurrence equations. Limitations to the applicability of field-dependent ionization coefficients are shown to arise however when the electric-field profile becomes highly nonunifor

Year: 2000
OAI identifier: oai:eprints.whiterose.ac.uk:909

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.