Stokes flow in a half-filled annulus between rotating coaxial cylinders

Abstract

A model is presented for viscous flow in a cylindrical cavity (a half-filled annulus lying between horizontal, infinitely long concentric cylinders of radii R-i,R-0 rotating with peripheral speeds U-i,U-0). Stokes' approximation is used to formulate a boundary value problem which is solved for the streamfunction, phi, as a function of radius ratio (R) over bar = R-i/R-0 and speed ratio S = U-i/U-0. Results show that for S > 0 (S 1, a sequence of 'flow bifurcations' leads to a flow structure consisting of a set of nested separatrices, and provides the means by which the two-dimensional cavity flow approaches quasi-unidirectional flow in the small gap limit. Control-space diagrams reveal that speed ratio has little effect on the flow structure when S 0 and aspect ratios are small (except near S = 1). For S > 0 and moderate to large aspect ratios the bifurcation characteristics of the two large eddies are quite different and depend on both (R) over bar and S

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.