Article thumbnail
Location of Repository

On the calculation of the Hilbert transform from interpolated data

By H. Boche and V. Pohl

Abstract

This correspondence studies the calculation of the Hilbert transform of continuous functions f with continuous conjugate (f) over tildef from a finite set of sampling points. It shows that there exists no linear operator which approximates (f) over tilde arbitrary well in the uniform norm from a finite number of sampling points for all possible continuous function f with continuous conjugate (f) over tilde. However for smooth functions such linear approximation operators exist and sufficient conditions on the smoothness of the functions are presented. The correspondence also examines the robustness of the calculation of the Hilbert transform from interpolated data and it gives explicit error bounds. It is shown that for a large class of algorithms the error grows at least proportional to the logarithm of the number of sampling points

Year: 2008
DOI identifier: 10.1109/TIT.2008.920219
OAI identifier: oai:fraunhofer.de:N-75352
Provided by: Fraunhofer-ePrints
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://publica.fraunhofer.de/d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.