Location of Repository

Critical Limits for Hg(II) in soils, derived from chronic toxicity data

By E. Tipping, S. Lofts, H. Hooper, B. Frey, D. Spurgeon and C. Svendsen

Abstract

Published chronic toxicity data for Hg(II) added to soils were assembled and evaluated to produce a data set comprising 52 chronic endpoints, five each for plants and invertebrates and 42 for microbes. With endpoints expressed in terms of added soil Hg(II) contents, Critical Limits were derived from the 5th percentiles of species sensitivity distributions, values of 0.13 μg (g soil)-1 and 3.3 μg (g soil organic matter)-1 being obtained. The latter value exceeds the currently-recommended Critical Limit, used to determine Hg(II) Critical Loads in Europe, of 0.5 μg (g soil organic matter)-1. We also applied the WHAM/Model VI chemical speciation model to estimate concentrations of Hg2+ in soil solution, and derived an approximate Critical Limit Function (CLF) that includes pH; log [Hg2+]crit = - 2.15 pH – 17.10. Because they take soil properties into account, the soil organic matter-based limit and the CLF provide the best assessment of toxic threat for different soils. For differing representative soils, each predicts a range of up to 100-fold in the dry weight-based content of mercury that corresponds to the Critical Limit

Topics: Agriculture and Soil Science, Ecology and Environment, Chemistry
Publisher: Elsevier
Year: 2010
DOI identifier: 10.1016/j.envpol.2010.03.027
OAI identifier: oai:nora.nerc.ac.uk:10405

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.