Skip to main content
Article thumbnail
Location of Repository

Defect pixel interpolation for lossy compression of camera raw data

By M. Schöberl, J. Seiler, A. Kaup, J. Keinert and S. Foessel

Abstract

The image processing pipeline of a traditional digital camera is often limited by processing power. A better image quality could be generated only if more complexity was allowed. In a raw data workflow most algorithms are executed off-camera. This allows the use of more sophisticated algorithms for increasing image quality while reducing camera complexity. However, this requires a major change in the processing pipeline: a lossy compression of raw camera images might be used early in the pipeline. Subsequent off-camera algorithms then need to work on modified data. We analyzed this problem for the interpolation of defect pixels. We found that a lossy raw compression spreads the error from uncompensated defects over many pixels. This leads to a problem as this larger error cannot be compensated after compression. The use of high quality, high complexity algorithms in the camera is also not an option. We propose a solution to this problem: Inside the camera only a simple and low complexity defect pixel interpolation is used. This significantly reduces the compression error for neighbors of defects. We then perform a lossy raw compression and compensate for defects afterwards. The high complexity defect pixel interpolation can be used off-camera. This leads to a high image quality while keeping the camera complexity low

Year: 2012
DOI identifier: 10.1117/12.907910
OAI identifier: oai:fraunhofer.de:N-206765
Provided by: Fraunhofer-ePrints
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://publica.fraunhofer.de/d... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.