Discrete-continuous optimization for multi-target tracking

Abstract

The problem of multi-target tracking is comprised of two distinct, but tightly coupled challenges: (i) the naturally discrete problem of data association, i.e. assigning image observations to the appropriate target; (ii) the naturally continuous problem of trajectory estimation, i.e. recovering the trajectories of all targets. To go beyond simple greedy solutions for data association, recent approaches often perform multi-target tracking using discrete optimization. This has the disadvantage that trajectories need to be pre-computed or represented discretely, thus limiting accuracy. In this paper we instead formulate multi-target tracking as a discrete continuous optimization problem that handles each aspect in its natural domain and allows leveraging powerful methods for multi-model fitting. Data association is performed using discrete optimization with label costs, yielding near optimality. Trajectory estimation is posed as a continuous fitting problem with a simple closed-form solution, which is used in turn to update the label costs. We demonstrate the accuracy and robustness of our approach with state-of-the art performance on several standard datasets

Similar works

Full text

thumbnail-image

Fraunhofer-ePrints

redirect
Last time updated on 15/11/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.