Investigation of material combinations processed via two-component metal injection moulding (2C-MIM)

Abstract

Joining materials with different properties into a single component is an attractive solution that allows producing parts with unique properties. In this respect, Two-Component Metal Injection Moulding (2C-MIM) presents numerous advantages, since the moulding and joining stage are performed in a single process step. In this work, the challenges, which occur when different materials are combined, are elucidated. Furthermore, the contact between metals with unequal chemical compositions leads to atomic interdiffusion that forms an interface layer. The interface quality is crucial to the production of intact parts after processing. Different material combinations are co-sintered and the interfaces are characterized by means of optical microscopy and EDX/SEM line scans. Further, thermodynamic and kinetic simulations are used to examine the interdiffusion in detail. The results show promising possibilities to combine different materials and helpful methods to examine the interface

Similar works

Full text

thumbnail-image

Fraunhofer-ePrints

redirect
Last time updated on 15/11/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.