Learning behavior models for hybrid timed systems


A tailored model of a system is the prerequisite for various analysis tasks, such as anomaly detection, fault identification, or quality assurance. This paper deals with the algorithmic learning of a system's behavior model given a sample of observations. In particular, we consider real-world production plants where the learned model must capture timing behavior, dependencies between system variables, as well as mode switches - in short: hybrid system's characteristics. Usually, such model formation tasks are solved by human engineers, entailing the well-known bunch of problems including knowledge acquisition, development cost, or lack of experience. Our contributions to the outlined field are as follows. (1) We present a taxonomy of learning problems related to model formation tasks. As a result, an important open learning problem for the domain of production system is identified: The learning of hybrid timed automata. (2) For this class of models, the learning algorit hm HyBUTLA is presented. This algorithm is the first of its kind to solve the underlying model formation problem at scalable precision. (3) We present two case studies that illustrate the usability of this approach in realistic settings. (4) We give a proof for the learning and runtime properties of HyBUTLA

Similar works

Full text



Full text is not available
oai:fraunhofer.de:N-254290Last time updated on 11/15/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.