10.1007/978-3-319-40530-8_13

Automatic inference of graph transformation rules using the cyclic nature of chemical reactions

Abstract

Graph transformation systems have the potential to be realistic models of chemistry, provided a comprehensive collection of reaction rules can be extracted from the body of chemical knowledge. A first key step for rule learning is the computation of atom-atom mappings, i.e., the atom-wise correspondence between products and educts of all published chemical reactions. This can be phrased as a maximum common edge subgraph problem with the constraint that transition states must have cyclic structure. We describe a search tree method well suited for small edit distance and an integer linear program best suited for general instances and demonstrate that it is feasible to compute atom-atom maps at large scales using a manually curated database of biochemical reactions as an example. In this context we address the network completion proble

Similar works

Full text

thumbnail-image

Fraunhofer-ePrints

Full text is not available
oai:fraunhofer.de:N-404933Last time updated on 11/15/2016

This paper was published in Fraunhofer-ePrints.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.