Quantum mechanical scattering investigation of the thermionic and field induced emission components of the dark current in quantum well infrared photodetectors

Abstract

The thermionic emission and field induced emission components of the dark current in quantum well infrared photodetectors are investigated using a quantum mechanical scattering theory approach. Calculations are performed for an experimentally reported device. Using this as a standard, the device dimensions were altered in order to increase its detection wavelength to cover the mid- (MIR) and far-infrared (FIR) regions of the spectrum. The behavior of the scattering mechanisms that contribute to the thermionic emission and field induced emission components were studied. The results highlight the change in the dominating scattering mediator across the MIR and FIR bands. © 2002 American Institute of Physics

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.