Skip to main content
Article thumbnail
Location of Repository

Scan registration for autonomous mining vehicles using 3D-NDT

By Martin Magnusson, Achim Lilienthals and Tom Duckett

Abstract

Scan registration is an essential subtask when building maps based on range finder data from mobile robots. The problem is to deduce how the robot has moved between consecutive scans, based on the shape of overlapping portions of the scans. This paper presents a new algorithm for registration of 3D data. The algorithm is a generalization and improvement of the normal distributions transform (NDT) for 2D data developed by Biber and Strasser, which allows for accurate registration using a memory-efficient representation of the scan surface. A detailed quantitative and qualitative comparison of the new algorithm with the 3D version of the popular ICP (iterative closest point) algorithm is presented. Results with actual mine data, some of which were collected with a new prototype 3D laser scanner, show that the presented algorithm is faster and slightly more reliable than the standard ICP algorithm for 3D registration, while using a more memory efficient scan surface representation

Topics: G700 Artificial Intelligence, G400 Computer Science, H671 Robotics
Publisher: Wiley Periodicals, Inc.
Year: 2007
DOI identifier: 10.1002/rob.20204
OAI identifier: oai:eprints.lincoln.ac.uk:1615

Suggested articles

Citations

  1. (1992). A method for registration of 3-D shapes. doi
  2. (2003). The normal distributions transform: A new approach to laser scan matching. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.