Skip to main content
Article thumbnail
Location of Repository

Action Knowledge Acquisition with Opmaker2

By T.L. McCluskey, S.N. Cresswell, N.E. Richardson and Margaret M. West

Abstract

AI planning engines require detailed specifications of dynamic knowledge of the domain in which they are to operate, before they can function. Further, they require domain-specific heuristics before they can function efficiently. The problem of formulating domain models containing dynamic knowledge regarding actions is a barrier to the widespread uptake of AI planning, because of the difficulty in acquiring and maintaining them. Here we postulate a method which inputs a partial domain model (one without knowledge of domain actions) and training solution sequences to planning tasks, and outputs the full domain model, including heuristics that can be used to make plan generation more efficient.\ud \ud \ud To do this we extend GIPO’s Opmaker system [1] so that it can induce representations of actions from training sequences without intermediate state information and without requiring large numbers of examples. This method shows the potential for considerably reducing the burden of knowledge engineering, in that it would be possible to embed the method into an autonomous program (agent) which is required to do planning. We illustrate the algorithm as part of an overall method to acquire a planning domain model, and detail results that show the efficacy of the induced model

Topics: QA75
Publisher: Springer
Year: 2010
OAI identifier: oai:eprints.hud.ac.uk:7716
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1007/978-... (external link)
  • http://www2.hud.ac.uk/staffpro... (external link)
  • http://www2.hud.ac.uk/staffpro... (external link)
  • http://www.springer.com/comput... (external link)
  • http://eprints.hud.ac.uk/id/ep... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.