Skip to main content
Article thumbnail
Location of Repository

The dominant-negative von Willebrand factor gene deletion p.P1105_C1926delinsR: molecular mechanism and modulation.

By Casari C., Pinotti M., Lancellotti S., Adinolfi E., Casonato A., De Cristofaro R. and Bernardi F.


Understanding molecular mechanisms in the dominant inheritance of von Willebrand disease (VWD) would improve our knowledge of pathophysiological processes underlying its prevalence. Cellular models of severe type 2 VWD, caused by an heterozygous deletion in the VWF gene, were produced to investigate the altered biosynthesis. Co-expression of the wild-type and in-frame deleted (p.P1105_C1926delinsR) VWF forms impaired protein secretion, high molecular weight multimer formation and function (VWF collagen-binding 1.9 +/- 0.5% of wild-type), which mimicked the patient's phenotype. mRNA, protein and cellular studies delineated the highly efficient dominant-negative mechanism, based on the key role of heterodimers as multimer terminators. The altered VWF, synthesized in large amounts with the correctly encoded "cysteine knot" domain, formed heterodimers and heterotetramers with wild-type VWF, in addition to deleted homodimers. Impaired multimerization was associated with reduced amounts of VWF in late endosomes. Correction of the dominant-negative effect was explored by siRNAs targeting the mRNA breakpoint, which selectively inhibited the in-frame deleted VWF expression. Although the small amount of the deleted protein synthesized after inhibition still exerted dominant, even though weakened, negative effects, the siRNA treatment restored secretion of large multimers with improved function (VWF collagen-binding 28.0 +/- 3.3% of wild-type)

Topics: von Willebrand Disease, dominant-negative effect, RNA interference
Year: 2010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.