Skip to main content
Article thumbnail
Location of Repository

Quantum kinetic theory: modelling and numerics for Bose-Einstein condensation

By W. Bao, P. Markowich and L. Pareschi

Abstract

We review some modelling and numerical aspects in quantum kinetic theory for a gas of interacting bosons and we try to explain what makes Bose-Einstein\ud condensation in a dilute gas mathematically interesting and numerically challenging.\ud Particular care is devoted to the development of efficient numerical schemes for the quantum Boltzmann equation that preserve the main physical features of the continuous problem, namely conservation of mass and energy, the entropy inequality and generalized Bose-Einstein distributions as steady states. These properties are essential in order to develop numerical methods that are able to capture the challenging phenomenon of bosons condensation. We also show that the resulting schemes can be evaluated with the use of fast algorithms. In order to study the evolution of the condensate wave function the Gross-Pitaevskii equation is presented together with some schemes for its efficient numerical solution

Publisher: Birkhauser
Year: 2004
OAI identifier: oai:iris.unife.it:11392/1397100
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/11392/13... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.