Article thumbnail

Detecting correlation between server resources for system management

By Tosi S., Casolari S. and Michele Colajanni


Efficient system management requires continuous knowledge about the state of system and application resources that are typically represented through time series obtained by monitors. Capacity planning studies, forecasting, state aggregation, anomaly and event detection would be facilitated by evidence of data correlations. Unfortunately, the high variability characterizing most monitored time series affects the accuracy and robustness of existing correlation solutions. This paper proposes an innovative approach that is especially tailored to detect linear and non-linear correlation between time series characterized by high variability. We compare the proposed solution and existing algorithms in terms of accuracy and robustness for several synthetic and real settings characterized by low and high variability, linear and non-linear correlation. The results show that our proposal guarantees analogous performance for low variable time series, and improves state of the art in finding correlations in highly variable domains that are of interest for the application context

Topics: data analysis
Publisher: 'Elsevier BV'
Year: 2014
DOI identifier: 10.1016/j.jcss.2014.01.002
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.