Magnetic gear dynamics for servo control

Abstract

This paper considers the analysis and application of magnetic gearbox and magnetic coupling technologies and issues surrounding their use for motion control servo systems. Analysis of a prototype magnetic gear is used as a basis for demonstrating the underlying nonlinear torque transfer characteristic, nonlinear damping, and `pole-slipping' when subject to over-torque (overload) conditions. It is also shown how `pole-slipping' results in consequential loss of control. A theoretical investigation into the suppression of mechanical torsional resonances in transmission systems encompassing these highly-compliant magnetically-coupled components is included, along with experimental results, from a demonstrator drive-train. The automatic detection of pole-slipping, and recovery scenarios, is also presented

Similar works

Full text

thumbnail-image

University of Lincoln Institutional Repository

redirect
Last time updated on 28/06/2012

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.