Energy-Efficient Multiprocessor Systems-on-Chip for Embedded Computing: Exploring Programming Models and Their Architectural Support

Abstract

In today’s multiprocessor SoCs (MPSoCs), parallel programming models are needed to fully exploit hardware capabilities and to achieve the 100 Gops/W energy efficiency target required for Ambient Intelligence Applications. However, mapping abstract programming models onto tightly power-constrained hardware architectures imposes overheads which might seriously compromise performance and energy efficiency. The objective of this work is to perform a comparative analysis of message passing versus shared memory as programming models for single-chip multiprocessor platforms. Our analysis is carried out from a hardware-software viewpoint: We carefully tune hardware architectures and software libraries for each programming model. We analyze representative application kernels from the multimedia domain, and identify application-level parameters that heavily influence performance and energy efficiency. Then, we formulate guidelines for the selection of the most appropriate programming model and its architectural support

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università degli Studi di Udine

redirect
Last time updated on 12/11/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.