Closing the sensing-reasoning-actuating loop in resource-constrained WSANs through distributed symbolic processing

Abstract

Many issues in creating complex applications for pervasive environments are primarily due to the effort required to integrate perception, reasoning and actuating tasks in an efficient and homogeneous way, especially when the underlying infrastructure consists of wirelessly networked embedded devices. To mitigate the complexity of the actual implementation, satisfactory programming paradigms supporting the integration and coordination among heterogeneous devices are required. In this paper we show how a distributed symbolic processing approach that is particularly suited for resource constrained devices, such as the nodes of a Wireless Sensor and Actuator Network (WSAN), may be apt to the purpose. We also discuss a case study in which sensors and actuators, without any centralized control, act on the environment according to the thermal preferences that are continuously learned and monitored

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Palermo

Full text is not available
oaioai:iris.unipa.it:1044...Last time updated on 11/12/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.